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Period-multiplying bifurcations and multifurcations in 
conservative mappings 

P Pakarinen and R M Nieminen 
Department of Physics, University of Jyvaskyla, 40100 Jyvaskyla, Finland 

Received 24 November 1982 

Abstract. We have investigated numerically and analytically the period-doubling bifurca- 
tions and the multifurcations of the periodic orbits of the conservative sine-Gordon 
mappings. We have derived a general equation for the appearance of multifurcations in 
conservative mappings. In agreement with many recent studies, we also find evidence 
that such mappings possess universality properties. We also discuss the role of multifurca- 
tions in conservative mappings exhibiting chaotic behaviour. 

1. Introduction 

A recent theory by Feigenbaum (1978) of nonlinear systems which exhibit period 
doublings approach to chaos predicts that these systems behave in a universal manner 
independent of thL precise equations which govern their dynamics. In dissipative 
systems the bifurcations of periodic solutions of the particular differential or difference 
equations have provided a possible mechanism for the onset of chaotic or turbulent 
behaviour (Libchaber and Mauer 1980). 

In this investigation we study analytically and numerically bifurcations and multi- 
furcations of periodic orbits of a conservative system. In particular we study the orbits 
of a general period N of the sine-Gordon mapping 

x n i l  = - y n  +2x, +pv sinpx, 

y n + 1 =  XfI 
T :  

n = 1 , 2 , 3 , .  . . (1.1) 

with p = 4. The mapping (1.1) is an area-preserving transformation (its Jacobian is 
equal to +1) and generates in the ( x ,  y )  plane pictures similar to the surfaces of section 
of Hamiltonian systems with two degrees of freedom (Fradkin and Huberman 1981). 

The mapping (1.1) is based on the familiar sine-Gordon equations, which in the 
continuum form are of the type 

(1.2) 
These equations govern the dynamics of several nonlinear systems in classical 
mechanics and in condensed matter physics, since they correspond to the energy 
extremum conditions of a variety of systems. Writing equation (1.2) in the difference 
form on a discrete lattice with equally spaced spins, atoms, etc, we obtain 

(dn+l-dn)-(dn -qi"-l)-pU sinpd, = O .  (1.3) 
To see that equation (1 .3)  indeed gives a two-dimensional area-preserving mapping 

4 -pv sin pqi = 0. 

@ 1983 The Institute of Physics 2105 
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(l,l),  let us introduce new variables x n  and y n  defined by (Yamaguti and Ushiki 1981) 

The transformation (1.3) now takes the form (1.1). Bak and Jensen (1982) have 
discussed the connection between the behaviour in the discrete models and in the 
continuous systems. Their analysis shows that this connection is not trivial. The 
discrete mathematical models apply, however, almost directly to problems related to 
solids, because in condensed matter physics the physical quantities and fields are often 
defined on a discrete lattice. 

The properties of structurally and magnetically modulated systems have been 
analysed numerically and analytically by several authors (Aubry 1980, Bak 1981, Bak 
and Pokrovsky 1981). It was found that chaotic structures are at least metastable 
(Yorke and Yorke 1979). We study the onset of the chaotic behaviour through both 
ordinary bifurcations and multifurcations in these models. On the basis of the numeri- 
cal calculations we determine the Feigenbaum convergence number 

where U k  is the value of the (control) parameter U ,  for which the bifurcation from 
period 2k to period 2k+1 takes place in the mapping (1.1). We find that, up to our 
numerical accuracy, S seems to converge towards the value S = 8.721 0 9 .  . . found 
also in other conservative systems (Benettin et a1 1980a, b, Bountis 1981, Greene et a1 
1981, Bak and Jensen 1982). The first three bifurcations of the mapping have also 
been studied analytically. In addition to the infinite series of bifurcations we find the 
feature which has been seen by Bak and Jensen (1982) in their recent study of d4 
lattice theory: a two-cycle splits into two two-cycles and not into one four-cycle as 
one would expect at a regular bifurcation. 

In conservative two-dimensional mappings, the emergence of multifurcations 
(Birkhoff multifurcations) is a very familiar feature. Multifurcation normally produces 
N stable elliptic fixed points (FPS) and also N unstable hyperbolic FPS. This is important, 
because chaotic behaviour concentrates into the vicinity of hyperbolic FPS. In this 
respect multifurcations in addition to ordinary bifurcations play a major role in creating 
chaos. Multifurcations do not tend to emerge in a random way during the route of 
ordinary bifurcations to chaos, but their appearance follows, according to  our study, 
strict conditions characterised by Chebyshev polynomials. In particular, we develop 
a systematic theory for the conditions of multifurcated FPS to appear in conservative 
area-preserving mappings. We find that each O-cycle FP of the mapping (1.1) 
experiences an N-furcation of its own according to the law 

where N can be regarded as a primary winding number and k as a secondary one. 
The matrix 
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relates the tangent space orbits at the points (x,, y,) and (x,,+~, y n c l ) :  

(1.8) 

Det m, is the Jacobian of the transformation and is equal to +1 for the mapping (1.1). 
On the basis of equation (1.6) we investigate analytically, and also by numerical 

computations, the various multifurcations of the sine-Gordon mapping. We find that 
our numerical study and our graphical pictures fit equation (1.6) amazingly well. In 
addition to an infinite series of multifurcations of the Q = 2k-cycle FPS, we find that 
also multifurcated FPS undergo multifurcations and series of bifurcations exhibiting 
the universal Feigenbaum number for conservative systems. We also find anomalous 
multifurcations for N = 3 and N = 4 .  In  9: 2 we discuss the period doublings and the 
stability analysis of sine-Gordon mappings. Section 3 contains a general theory for 
multifurcations in conservative systems. This is applied to the sine-Gordon equation 
in Q 4 ;  a short summary is given in Q 5 .  

T 
( S x n + l ,  Syn+l) = m, (Sxn, Syn lT. 

2. Period doublings and stability analysis 

In  this section we obtain analytically the first three period-doublings of the mapping 

X, + I = -yn + 2x, + 4v  sin 4x, 
T :  

Y n + l  = X n .  

We also analyse the stability properties of the fixed points. Then following numerically 
(and also graphically) the behaviour of the mapping near these periodic orbits, as the 
control parameter U is increased, we obtain useful information about the higher-order 
orbits of the periodic-doubling sequence: Q = 2 k ,  for k = 0,1 ,2 ,  . . . . We start to 
consider the iterates of (2.1) in the (x,,, y,) plane. Let {x,,, x , + ~  = x,}denote a Q-period 
orbit of (2.1). A periodic orbit of the map is a finite sequence of distinct points, each 
of which is the image of the previous one, and whose first point is the image of the 
last. Following the usual stability methods (Greene 1979) we can say that the periodic 
orbit of period Q (or Q-cycle) is stable or unstable according to whether each of its 
points is stable or unstable when considered as a fixed point of TO. By continuity, 
they are all stable or unstable together, so it is sufficient to examine the stability of 
one of them. Linearising T Q  about {x,} we obtain a 2 x 2 matrix M which governs 
the motion of nearby points {x, +&} according to 

= M i +  O ( c 2 ) .  

The stability of the point under T Q  is largely determined by the eigenvalues A of M, 
called the multipliers of the periodic orbit. By the chain rule, M can be written as 
the product of the matrices m, (equations (1.7) and (1.8)) at each point around the 
orbit, starting at the given point. As m, has determinant +1  everywhere to preserve 
area, M must also have determinant 1. Together with the reality of M, this limits the 
eigenvalues to conjugate points A, 1 on the unit circle in the complex plane, or 
reciprocal points A, 1 / A  on the real axis. In  the latter case the periodic points are 
clearly unstable, but in the former case they can be shown to be stable (Greene 1979). 
The eigenvalues A of M depend only on its trace, Tr M, and are the roots of 

A - Tr(M)A + 1 = 0. (2.3) 
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Thus the stability conditions are: 

stable or elliptic 
unstable or hyperbolic (2.4) 
marginally (un)stable or parabolic 

where 

for Q-periodic orbit {x"}. 
We start to consider the iterates of equation (2.1) in the (xn, y") plane. We linearise 

equation (2.1) about { x n }  and write the resulting variational equations in matrix form: 

( s x ~ + ~ ,  a y , + I ) T =  mn(Sxn, ~ y , , ) ~  (2.6) 

-3 2 f 16c cos 4x, 
m n = (  

Det m, is equal to + I ,  which confirms that the mapping is indeed area preserving. 
With the help of equations (2,1)-(2,6) we find two fixed points of period one of the 
mapping: ( a )  (x, y )  = (b, :.n) and (6) (x, y )  = (0,O). The choice (6)  gives an unstable 
FP for all U > 0. The choice ( a ) ,  on the other hand, has /Tr MI s 2 for 0 s c s 0.25. 
It can be noted that the period-one solution (one-cycle) is independent of c over the 
range 0 < U < 0.25. Figure 1 illustrates graphically the iterates of the mapping for 
t' =0.15. We follow this one-cycle FP until its /Tr MI = 2 ,  at which point it turns 
unstable or hyperbolic yielding the stable orbit of twice the period. 

i 
1 . 2  { 

0 8 i  '. 

O L 1  

;' 

0 0 4  0.8 1 2  1 6  2 .o 
Xn 

Figure 1. Orbits of the sine-Gordon mapping (2.1) at L' =0.15 near the stable fixed point 
($7, i n )  surrounded by closed KAM surfaces. The FPS are denoted by S istable) and U 
iunstablel. 
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At t' = 0.25 the first such periodic doubling occurs, as shown in figures 2 ( a )  and 
(6).  The islands around the one-cycle become thinner and rotate 90' compared with 
figure 1. After the bifurcation to two-cycle the two stable FPS begin to move in 
opposite directions. The one-cycle FP ($T, i 7 r )  becomes unstable or hyperbolic with 
the reflection and a chaotic sea concentrates in its vicinity. The two new elliptic FPS 
are surrounded by closed Kolmogorov-Arnold-Moser (KAM) orbits of their own. In 
the iteration procedure, the two islands are visited successively. After the bifurcation 
there are still closed KAM orbits encircling both FPS. At larger values of U these orbits 
will disappear (Greene 1979). A plot of the fixed points x,, against t' over the range 
0 < t' < 0.414 65 are shown in figures 3(a )  and (6). It can be seen that the two branches 
of the two-cycle FPS are symmetric with respect to i 7 r ,  so that x1 = y7r -xz.  1 

1 20 

0 96 

0 72 

0 40 

0 24 

1 

1 20 

0 96 

0 72 

0 48 

0 24 

1 I I I 

( 4 )  

1 I I I I 

l b )  

. .  
* .. . .... .. '2. 

' 4' 

-I I I I I 

0 24 0 40 0 72 0 96 1.20 
X" 

Figure 2. ( a )  Orbits of the mapping 
( 2 . 1 )  at c =0.247 before the period- 
doubling bifurcation of period 1-2. 
Note that the K A M  surfaces have 
rotated 90" compared with figure 1. 
The stable FP (:T, :T) is also surroun- 
ded by eight Birkhoff islands. ( h )  
Orbits at L' = 0 . 2 5 3  after the first 
period-doubling bifurcation. The 
original stable FP has turned unstable 
and two new stable FP have emerged. 
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u.131 \ 

0.50 1 LLi ......... 

0 2 5 1  ~ , , '3 
4 

0 25 0 30 0 35 0.40 
I 

0.4121 0.4128 0.4135 0 4143 
V 

Figure 3. i n  1 The bifurcation tree: a plot of the period-doubling FPS as a function of the 
control parameter c over the range 0 < c < 0.414 65 .  An anomalous bifurcation ('banana 
split') to ( 2  x 2)-cycle is indicated. Note that bifurcations may produce 'forks' in the ( y n ,  U )  

plane instead of the (x", U ]  plane. The dotted curve stresses the split nature of the 
bifurcation. i b )  Magnification of the area denoted by M in i n ) .  

The two-cycle FPS become unstable at the point (xl ,  y l )  = (sr, 1 3  gr), (XZ,  y2) = ( ~ T , X T )  3 1  
1 when t' = s r .  This can be calculated analytically by taking advantage of certain 

symmetries of the mapping. Figures 4(a)  and ( b )  show the orbits calculated before 
and after the bifurcation at t' = 0.38 and t' = 0.40. Half of the points are shown. We 
find that the FPS split into two elliptic FPS with a hyperbolic FP in between. At the 
bifurcation point Tr M = +2. Hence, the original two-cycle FPS turn to ordinary 
hyperbolic ones. The new FPS belong to two different and symmetric two-cycles 
surrounded by KAM orbits. This unusual behaviour is called the 'banana split' and 
has been found very recently by Bak and Jensen (1982) in their study of d4 lattice 
theory. This anomalous phenomenon is also illustrated in figure 3(a) .  

These two two-cycles become unstable at t' = Q(r2 + 1)'" = 0.412 . . . . This point 
can also be calculated analytically. The real bifurcation to the four-cycle happens at 
the point (a s i n - ' ( r / ( r 2 +  1)1'2), tr + a s i n - ' ( r / ( r 2 +  1)*'2)) for the former two-cycle 
and at the point (an - a s i n - ' ( r / ( r 2 +  1)'l2), ir + a  sin-'(.rr/(r2+ 1)1'2)) for the latter 
two-cycle. Over the whole range Qr < t' < &r2+ l)l'z the distance between the two 
successive iterates of the mapping is equal to &r for both two-cycles. 



Multifurcations in conservative mappings 2111 

The FPS belonging to higher-order cycles cannot be found easily analytically. We 
therefore resort to numerical computations. Even so, locating the initial conditions 
of a periodic orbit in the plane can become quite tedious if one has to search in both 
x and y directions. A method developed by Greene (1979) makes the numerical 
search easier. Greene's method shows that two of the FPS, belonging to a 2N-cycle, 
are on a simple one-dimensional curve in the xy plane. The rest of the points follow 
automatically by iteration. 

The mapping (2.1) can be decomposed into a product of two involutions (Bountis 
1981, Bak and Jensen 1982): 

I = IJl 

1 X n  [ f:] [ - y .  +2xn +4u sin 4x, (2.7) 

where 1: = I :  = 1. Now the periodic orbits of T can be found by choosing the initial 
conditions (xl, y l )  which are FPS of I , :  

(Xl, y1) =I1(x1, y1) 

or 

2yl = 2x1 + 4 c  sin 4x1. 

Together with (xl ,  y l )  this curve also contains the point (x,,,, y,,,), m = 2k-1, of every 
2k-periodic orbit. The curve (2.9) is called the dominant symmetry curve of the 
mapping (2.1). 

With the help of Greene's method we followed numerically the bifurcation route 
to chaos. In numerical computations we used 16-digit accuracy. We found that 
successive bifurcations occurred at u4 = 0.414 362 8 . . . , u s  = 0.414 620 9 . . . , 0 6  = 
0.414 650 4 ,  . . , . . . , vm = 0.414 653 8 . . . . These numerical results give the value 
8 = 8.721 09 for the Feigenbaum constant (equation (1.5)). Our result agrees well 
with the value of S found in other conservative systems (Bountis 1981, Greene et a1 
1981, Bak and Jensen 1982). 

3. Multifurcations in conservative mappings 

The appearance of Birkhoff islands or N-cycle orbits is one of the most common 
features in conservative two-dimensional area-preserving mappings. No systematic 
study of the onset of general N-cycle orbits has been reported so far. In the following 
we make an attempt to do so. 

Consider a conservative area-preserving mapping of a general type 

which can be transformed with the help of equation (1.4) into the two-dimensional form 

X " + l  = - b y ,  +F(x,,  t') Y n + l  (3.2) 
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0.42 - 

0.40 - 

0.38 - 

(bl  
0.44- 

0.42- 

0.w) - 

Figure 4. ( a )  The ’banana’ (U = 0.38). 
The two-cycle is approaching an 
instability (U =&). ( b )  The ‘banana 
split’ (U = 0.40). The two-cycle has 
not actually bifurcated, but has split 
into two different two-cycles indicated 

1 .I2 1 .I4 1.16 1.18 1.20 1.22 by SI and S2. Half of the points are 
Xn shown. 

The stability of a P-cycle (note, P may be different from 2‘, § 4) orbit (xl, x2, . . . , xp) 
depends on the matrix M, 

(SXP, SypIT=M(Sxi, 8 ~ 1 ) ~  
(3.3) 

P -3 M = n mn = fi (F’(x;y ’) 
n = l  n = l  

The P-cycle is stable if ITr MI < 2. For the one-cycle we obtain directly /Tr MI = 

Suppose that at a certain value of parameter U the one-cycle FP is surrounded by 
/F’(Xl,U)l<2. 

N Birkhoff islands. Thus the condition for the Birkhoff N-cycle to be stable 
N 

lTrM1= Tr n m, < 2  (3.4) I n = l  I 
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is fulfilled. Let us now study the brief history of the stable N-cycle by decreasing the 
value of the control parameter U .  Each of the N-cycle FPS, xl , .  . . , x N ,  tends to 
converge toward the one-cycle stable ‘mother’ orbit. In the limit where the N-cycle 
orbits are born, we can denote x 1  = x 2  = . , , = xN. The N-cycle has become marginally 
stable. This is obvious, since on the other hand nothing prevents us regarding the 
one-cycle as an N-cycle. The limiting case is covered by the condition 

N 
/ T r M / =  Tr n m, = i T r m N ) = 2  I n = l  I 

where 

In calculating the trace of M we can take advantage of the property of 
matrices: 

Tr m” = A ? + A 

where A l , 2  are the two eigenvalues of the matrix m. For simplicity we 

13.5) 

square 

(3.6) 

denote 
d, = F’(x,, c ) .  The eigenvalues A l , z  are found by solving the corresponding characteris- 
tic equation 

A2-dlA t b = O  
which gives 

For Tr  mN we obtain 

Tr m N  = ( i d l  + - b] } + {$dl -[(idl)’ -b ]1 ’2 }N 

A 1 ,2  = $dl f [[ id1)2  -b]1/2. 

1 / 2  N 

= bN/2({ib-1/2dl +[(ib-1’2d1)2- 13 1 / 2  } N 

+{ib-”’dl -[[$b-”2dl)2- 13 }’ ) 
1 / 2  Y 

=2bN/2T r -lI2dl) 
N (2b 

where T N  is the Nth-order Chebyshev polynomial of the first kind. We can now write 
the condition (3.5) for an N-cycle to emerge in the form 

(3.10) /Tr MI = ITr mN/  = 12(b”2)NTN(tdlb-”2)I = 2. 

For b = +1 we obtain directly 

ITr MI = 12TN($il)/= j c N ( d l ) l =  2 (3.11) 

where CN is the Nth-order Chebyshev polynomial of the second kind. Taking advan- 
tage of the properties of Chebyshev polynomials the roots of equation (3.11) can be 
written down immediately as 

dl  = 2 C O S ( ~ ~ T / N )  (3.12) 

where N can be regarded as the primary and k as the secondary winding number. 
Recalling that for the one-cycle 

(3.13) dl = F’(x l ,  U )  = Tr M, 

we can finally write equation (3.12) in the form 

Tr M = 2 c o s ( 2 k ~ / N ) .  (3.14) 
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Equation (3.14) can be generalised to deal with the appearance of multifurcations of 
general P-cycle mother orbits. If we denote 

P 
M =  n m, 

n = l  

(3.15) 

then equation (3.14) gives the condition for (PxN)-furcation to appear, that is by 
increasing the parameter U, each of the P-cycle FPS are surrounded by N Birkhoff 
islands. The iteration procedure follows the (P x N)-furcated FPS successively in a 
manner where FPS belonging to each mother orbit (P-cycle) are visited in turn. If we 
study the history of the (P x N)-cycle, we find that in the limiting case the ( P  x N)-cycle 
fixed points x i ,  . . , X L P - ~ ;  x 2 ,  x 2 + p , .  . . , x k p - p + l ;  . . . ; x b ,  x i p , .  . . , x k p  tend 
to converge toward the P-cycle fixed points x l ,  x 2 , .  . . , x p ,  respectively. So we obtain 
for (P x N)-cycle 

I t  

P x N  N 

(3.16) 
n = l  

Furthermore, it can be easily shown (Greene er a i  1981) that the eigenvalues of the 
matrices n r=l  m, can be written in the form 

= 3 Tr M*[($ Tr M)* - 11’” (3.17) 

where Tr M is the trace of ncCl m,. With the aid of the previous results (equations 
(3.6), (3.8)-(3.10), (3,16)-(3.17)) with b = +1 we can write the condition for very 
general (P x NI-furcation to appear in the form (3.14): 

Tr M = 2 c o s ( 2 k ~ / N )  (3.18) 

where Tr M is now the trace of the matrix M of the P-cycle mother orbit. 

4. Multifurcations in the sine-Gordon system 

In  this section we apply the theory developed in the previous section to the multifurca- 
tions of the mapping (2.1). At the beginning we investigate the multifurcations before 
the appearance of the first period-doubling bifurcation. In this case we are fortunate 
since the one-cycle stable FP ($x ,  $7) is constant over the whole range 0 < c < 0.25. 
The matrix M of the mapping (2.1) is 

M = ( 2 - t 6 ~  -1) 
0 ’  

The multifurcations to the N-cycles are possible whenever 

2 - 1 6 ~  = 2 C O S ( ~ ~ T / N )  (4.2) 
or 

= Q[1 - c o s ( ~ ~ T / N ) ] .  (4.3) 
We find that for the values 2k/N = 0, 1 the equation (4.3) gives the limits of stability 
of the one-cycle: c =0 ,  2: = a .  A three-furcation is expected for 2k /N = $  or when 
t’ = 0.1875. Tr M of the mother orbit (one-cycle) is equal to -1 at that point. This 
point is a special one for the three-cycle. Our numerical calculations show that two 
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different three-furcations take place at that point. The orbits at U = 0 . 1 9  after the 
three-furcations are shown in figure 5 ( a ) .  Both of the three-cycles are stable. This 
partly supports the analysis of Arnold (1978) and Meyer (1970).  They also explain 
the anomalous behaviour of branches with N = 3 ,  which originally is due to the fact 
that the linearisation of the mapping ( 2 . 1 )  is not sufficient to describe the behaviour 
of three-furcations. A four-furcation is possible for 2klN = f .  The ratio 2klN = a = $ 
is really expected, because it was not used up by an ordinary bifurcation. The value 
of the parameter c for a four-furcation can be calculated immediately: t' = 0.125. 
Tr M of the mother orbit at that point is equal to zero. In figure 5 ( b )  the orbits after 
a four-furcation are shown. Meyer (1970) also predicts the anomalous behaviour of 
the four-furcations, at least when Tr M = 0 for the mother orbit. We find, however, 
that an ordinary four-furcation takes place exactly at the point U = 0.125 leading to 
four stable and four unstable FPS. Moreover, we find five-furcations at 2klN = $ and 
2 k / N  = e - .  Hence, the only possibility for a six-furcation to occur is at 2 k / N  = $, since 

1 2  

1 0  

0 8  

0 6  

O L  

I 1 I 

( a )  

.. . . . -. 

.-__ '... 

Y . 7 "  

0.72- 

0.48 - 

7 
0.48 

r 
I .,,. ., ... .: 

..- ._, . .  
% ' .  ; 

. .  
. .  ., ,. " 

..: ' 

- .- ..- . ' . .  
. .  * .', 

I I 

0 72 0196 1.20 
X" 

Figure 5. ia j Orbits of the mapping at 
L' =0.19 after an anomalous three- 
furcation of the one-cycle. Two 
different stable three-cycles have 
emerged. They are indicated by S I  and 
sz. six unstable FPS (unstable six- 
cycle) lie between the stable FPS of the 
three-cycles. Note that the one-cycle 
FP and both the three-cycle FPS are 
surrounded by the common KAM 
surfaces. ( b )  Orbits of the mapping at 
L' =0.13  after an ordinary four- 
furcation of the one-cycle. Note that 
the connection between five Birkhoff 
islands ifive-furcated FPS) has already 
disappeared while the four-furcated 
FPs are still surrounded by the common 
K A M  surfaces. 
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the ratio 2k/N = $ = $  is used up by three-furcations. One can proceed in this way 
up to higher-order multifurcations. For example, an ordinary eight-furcation is illus- 
trated in figure 2(a).  

In particular, we followed numerically one of the four-furcated islands on its way 
to chaos. We find that it exhibits the Feigenbaum convergence number S = 8.721 . . . 
for conservative systems. Similar results have previously been obtained by Bak and 
Jensen (1982) in their study of 44 theory. We find also that the N-furcated FPS 
experience multifurcations. Together with ordinary bifurcations this phenomenon is 
important in creating chaos. The orbits of one of the four-furcated islands and its 
five-furcation ((4 x 5)-cycle) are shown in figure 6. The first bifurcation ((4 x 2)-cycle) 
is illustrated in figures 7 ( a )  and (6). 

Multifurcations in two-cycle mother orbits can be studied only by numerical 
computations. As previously mentioned, x1 = 5.n -x2 for a two-cycle. With the aid 
of equation (2.1) we obtain 

1 

2x1 = 2ti.n -x l )  +4u sin 4ct.n - X I )  

or 

and 
* 2 + 16u cos 4x, -'I =(2+16v c o s 4 ~ ~ ) ~ - 2 .  

1 0 
T r M = T r  n I 

i = l  

The condition for N-furcations ((2 X N)-cycles) will give 

-2 f 2 [ ~ 0 ~ ( 2 k r / N )  + 11 
v = (  

16 COS 4X 1 

1 2348 1 

I 12312 

1.2312 1.2324 1.2336 1.2u8 
X" 

(4.4) 

(4.5) 

Figure 6. Orbits near one of the four-furcated FPS at L! = 0.2012 after the five-furcation 
of period 4-20. 
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1236  

1,234 

X " * l  

1232 

. . .  . . . .  . . .  . .  . .  

1230  1232 1 234 1236 1232 1 2 3 4  1.236 1238  
X" 

Figure 7. Orbits near the four-furcated FP ( a )  just before a period-doubling bifurcation 
at L' = 0.2014 and (6 ,  after bifurcation to the ( 4  x 2)-cycle at c = 0.2017. 

The coupled pair of equations (4.4) and (4.5) cannot be solved analytically, since 
equation (4.4) is transcendental. They are, however, well defined in the range a.rr < 0 < 
&. We find that our numerical computations agree with our theory of multifurcations 
during this two-cycle. Additional features also become evident. For instance, we find 
the situation where a multifurcation leads to two different four-cycles instead of one 
eight-cycle. This happens at x 1  = 0.4948 . . .  with U = 0.316 63 . . .  when N = 4. This 
unusual multifurcation is due to the fact that the original two-cycle FPS become 

k 
. \  2 , .  s1 '.j ,, 

. . .  . . . . .  . . .  . .  . .  
~ . . . .  : . .  . . . . . . . . .  ,...' . . . . . . .  .... . .  

s2- ....... J [) (... .... ' ? '  s2 

.... "7 . .  
';' ._  ,- s1 
. .  

0 35 
0 91 0.98 1 .os 112 119  

J" 

Figure 8. The 'starfish'. Orbits of the mapping at c =0.32  after an anomalous ( 2 x  
2)-furcation of one of the two-cycle FPS. The two different cycles are indicated by SI and 
SZ. 
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marginally stable at this point, that is ITr MI = 2 also for the two-cycle mother orbit. 
For the ratios 2k/N in equation (4.5) we obtain 2k/N = 0, which might give the real 
bifurcation. Figure 8 illustrates this curious phenomenon called ‘starfish’ by Bak and 
Jensen (1982). The other special multifurcation can be expected when Tr M = -1 for 
the mother orbit. This happens at x 1  = 0.573 3 4 .  . , with U = 0.2827. . . when N = 3. 
Again, as in the case of the one-cycle mother orbit, we find that two different 
three-furcations take place at that point. The orbits after the three-furcations are 
shown in figure 9. 

In the area of (2X2)-cycle orbits we can take advantage of the symmetry of the 
mapping ( l . l) ,  which states that x 1  =an + x 2  in the whole range in < U  <i ( . r r2+ l)I’*. 
This gives us the possibility to predict multifurcations analytically. It is easy to see 
that N-furcations will happen for 

U =$(7r2+$[l -cos(2k.rr/N)1}1’2. (4.6) 

For bifurcations 2k/N = 0 or 1. We find that the multifurcations given by equation 
(4.6) fit our numerical and graphical investigations surprisingly well irrespective of 
the fact that the multifurcation can sometimes lead only to the birth of unstable FPS. 

Such a situation happens for 2k /N = $ (equation (4.6)).  Each of the three-furcated 
FPS emerges as an unstable (hyperbolic with reflection) one. However, our theory 
predicts quite well the area where these unstable FPS turn to be stable. This is due 
to the fact that stabilisation takes place in the very vicinity of the mother orbit FPS. 

1 

0 70 

0 63 

xn.1 

0 56 

0 49 

0 42 

I I I I 

I I I 

0 81 0 90 0 99 1 08 111 
X” 

Figure 9. Orbits near the two-cycle FP at L = O  29 after an anomalous 1 2  x3I-furcatlon 
to two different six-cycles indicated by S ,  and Sz 

5. Conciusions 

In the mappings, which describe real physical systems, the values of control parameters 
leading to ordinary bifurcations are often unphysically high. The attempts to study 
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the chaotic behaviour of these systems through the ordinary bifurcations would be 
fruitless but, on the other hand, the values of control parameters of multifurcations 
are often in the range of physical interest. We make the conclusion that multifurcations 
in many of the mappings describing conservative physical systems form a dominant 
way in creating chaotic behaviour. This paper reports a number of analytical and 
numerical results for multifurcations in conservative systems. Their appearance is 
governed by a simple equation involving the Chebyshev polynomials. 

Acknowledgment 

This work has been partly supported by the Academy of Finland. 

References 

Arnold V 1978 Mathematical Methods of Classical Mechanics (New York: Springer) 
Aubry S 1980 Ferroelectrics 24 53 
Bak B 1981 Phys. Reu. Lett. 46 791 
Bak P and Jensen M H 1982 J .  Phys. A :  Math.  Gen.  15 1893 
Bak P and Pokrovsky V L 1981 Phys. Reo. Lett. 47 958 
Benettin G, Cercignani C, Galgani L and Giorgilli A 1980a Lett. Nuooo Cimento 28 1 
Benettin G, Galgani L and Giorgilli A 1980b Lett. Nuouo Cimento 29 163 
Bountis T C 1981 Physica 3D 577 
Bountis T C and Helleman R H G 1981 J .  Math. Phys. 22 1867 
Feigenbaum M J 1978 J. Star. Phys. 19 25 
Fradkin E and Huberman B A 1981 University ofIllinois Preprint 
Greene J M 1979 J.  Math. Phys. 20 1183 
Greene J M, MacKay R S, Vivaldi F and Feigenbaum M J 1981 Physica 3D 468 
Libchaber A and Mauer J 1980 J .  Physique 41 C3 
Meyer K R 1970 Trans. A m .  Math. Soc. 149 95 
Yamaguti M and Ushiki S 1981 Physica 3D 618 
Yorke J A and Yorke E D 1979 J .  Stat. Phys. 21 263 


